منابع مشابه
Frames in super Hilbert modules
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
متن کاملProjective Hilbert A(D)-Modules
Let C denote the category of Hilbert modules which are similar to contractive Hilbert modules. It is proved that if H0, H ∈ C and if H1 is similar to an isometric Hilbert module, then the sequence 0 → H0 → H → H1 → 0 splits. Thus the isometric Hilbert modules are projective in C. It follows that ExtC (K, H) = 0, whenever n > 1, for H, K ∈ C. In addition, it is proved that (Hilbert modules simil...
متن کامل$ast$-K-g-Frames in Hilbert $mathcal{A}$-modules
In this paper, we introduce the concepts of $ast$-K-g-Frames in Hilbert $mathcal{A}$-modules and we establish some results.
متن کامل*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
متن کاملEssentially Reductive Hilbert Modules
Consider a Hilbert space obtained as the completion of the polynomials C[z ] in m-variables for which the monomials are orthogonal. If the commuting weighted shifts defined by the coordinate functions are essentially normal, then the same is true for their restrictions to invariant subspaces spanned by monomials. This generalizes the result of Arveson [4] in which the Hilbert space is the m-shi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2016.07.046